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Interaction of isotropic quasi-incompressible turbulence with a weak shock wave was 
studied by direct numerical simulations. The effects of the fluctuation Mach number 
Mt of the upstream turbulence and the shock strength M f -  1 on the turbulence 
statistics were investigated. The ranges investigated were 0.0567 < Mt < 0.1 10 and 
1.05 < M ,  < 1.20. A linear analysis of the interaction of isotropic turbulence with a 
normal shock wave was adopted for comparisons with the simulations. 

Both numerical simulations and the linear analysis of the interaction show that 
turbulence is enhanced during the interaction with a shock wave. Turbulent kinetic 
energy and transverse vorticity components are amplified, and turbulent lengthscales 
are decreased. The predictions of the linear analysis compare favourably with 
simulation results for flows with M: < a(M; - 1) with a z 0.1, which suggests that the 
amplification mechanism is primarily linear. Simulations also showed a rapid evolution 
of turbulent kinetic energy just downstream of the shock, a behaviour not reproduced 
by the linear analysis. Investigation of the budget of the turbulent kinetic energy 
transport equation shows that this behaviour can be attributed to the pressure 
transport term. 

Shock waves were found to be distorted by the upstream turbulence, but still had a 
well-defined shock front for M t  c a(M:- 1) with a x 0.1). In this regime, the statistics 
of shock front distortions compare favourably with the linear analysis predictions. For 
flows with M t  > a(M: - 1) with a x 0.1 , shock waves no longer had well-defined 
fronts : shock wave thickness and strength varied widely along the transverse 
directions. Multiple compression peaks were found along the mean streamlines at 
locations where the local shock thickness had increased significantly. 

1. Introduction 
The presence of shock waves is an important feature that distinguishes high-speed 

supersonic flows. Understanding the mechanisms by which turbulence interacts with a 
shock wave is of fundamental importance in understanding the complex phenomena of 
turbulent boundary layer/shock wave interactions. The simplest circumstance in which 
turbulence interacts with a shock is the case of isotropic turbulence interacting with a 
normal shock: a problem which is the subject of this paper. 

The study of the interaction of turbulence with a shock wave began with the 
development of linear theories in the early 1950s. Using his general theory of 
aerodynamic sound generation, Lighthill (1953) estimated the acoustic energy scattered 
from the interaction of turbulence with a shock wave. Analytical studies of 
shock-turbulence interaction (Ribner 1953 ; Moore 1953; Kerrebrock 1956; Chang 

t Also with the Department of Aeronautics and Astronautics, Stanford University. 
$ Also with NASA-Ames Research Center. 



534 S. Lee, S. K.  Lele and P .  Moin 

1957; McKenzie & Westphal 1968) were developed using a linearized description of the 
interaction of plane disturbances interacting with a shock wave. These disturbances 
were represented as waves of vorticity, entropy, or sound (Kovasznay 1953). Any one 
such wave interacting with the shock wave generates all three fluctuations downstream 
of the shock wave. Ribner (1953) investigated the passage of a single vorticity wave 
through a plane shock and its modification, with simultaneous generation of a sound 
wave in a reference frame fixed on the shock wave. This analysis was later extended to 
study turbulence amplifiation due to a shock wave (Ribner 1954), the flux of acoustic 
energy emanating from the downstream side of the shock (Ribner 1969), and the one- 
dimensional power spectra of various fluctuations downstream of the shock (Ribner 
1987). Moore (1953) analysed the flow field produced by oblique impingement of weak 
plane disturbances on a normal shock wave in a reference frame fixed on the mean 
upstream flow. Anyiwo & Bushnell (1982) revisited the linear analysis to identify 
primary mechanisms of turbulence enhancement - amplification of the vorticity mode, 
generation of acoustic and entropy modes from the interaction, and turbulence 
‘pumping’ by shock oscillations. 

Debieve, Gouin & Gaviglio (1982) analysed the evolution of turbulence through a 
shock, and separated the effects of the specific turbulent sources from the effects of the 
mean motion - convection and production. Their prediction of the longitudinal 
velocity fluctuation was in good agreement with the experimental results. 

Experiments on the interaction of turbulent boundary layers with an oblique shock 
wave were conducted by Debieve et al. (1982), Dolling & Or (1985), Andreopoulos & 
Muck (1987), and Smits & Muck (1987) amongst others. A general finding from the 
experiments is that Reynolds shear stress and turbulence intensities are amplified 
across the shock wave. The interaction of an oblique shock wave with a turbulent 
boundary layer involves several complex phenomena : (a) unsteady flow separation in 
the interaction region, (b) oscillation of the shock wave in the longitudinal direction, 
(c) streamline curvature, and (d) inhomogeneity effects due to walls. Because of these 
complications, it has been difficult to clearly identify through these experiments the sole 
effect of the shock wave on turbulence. 

In order to isolate the effect of a shock wave on turbulence, Debieve & Lacharme 
(1986) conducted experiments on the interaction between the shock wave and grid- 
generated turbulence. They measured velocity and temperature spectra upstream and 
downstream of the shock wave and concluded that turbulent fluctuations are amplified 
and the Taylor microscales increase during the interaction. An intermittency effect due 
to unsteady shock wave distortion on turbulence statistics was also clearly described. 
Keller & Merzkirch (1990) performed an experiment on the interaction of grid- 
generated turbulence with a shock in a shock tube. They verified amplification of the 
turbulence intensity quantitatively, showing that amplification was restricted to the 
lower wavenumbers in the spectrum. Honkan & Andreopoulos (1992) examined the 
interaction of a normal shock wave with homogeneous grid-generated turbulence. 
They found that turbulence is considerably amplified during the interaction, and that 
the amplification factor is not the same at different lengthscales and different 
turbulence intensities. They also found that large eddies were amplified more than 
small eddies during the interaction, leading to the increase of a dissipation lengthscale. 
This was in line with the observation of lengthscale increase made by Debieve et al. 
(1986) and Keller & Merzkirch (1990), but it contradicts the intuitive expectation that 
mean flow compression should decrease the relevant turbulence lengthscales. As will be 
shown, these results disagree with the results of the present study. Jacquin, Blin & 
Geffroy (1991) investigated the interactions of a normal shock wave with grid- 
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generated turbulence and a turbulent jet, and compared the turbulence amplification 
with the predictions of linear analysis. They observed that turbulence amplification was 
not significant for the grid-generated turbulence, and that the decay of turbulent 
kinetic energy was accelerated downstream of the shock wave. 

The aforementioned experiments treated the interaction of a shock with quasi- 
incompressible turbulence where fluctuations in pressure and density are not 
significant. An experiment on the interaction of weak shocks ( M I  = 1.007, 1.03, and 
1.1) with a random medium of density inhomogeneity was performed by Hesselink & 
Sturtevant (1988). They observed that the pressure histories of the distorted shock 
waves were both peaked and rounded and explained these features in terms of the 
focusing/defocusing of the shock front due to inhomogeneity of the medium. 

Numerical simulations of the shock-turbulence interaction are just beginning to 
emerge. Using a shock capturing numerical technique, Rotman (1991) numerically 
calculated the change in a two-dimensional turbulent flow caused by the passage of a 
travelling shock wave. He found that the shock causes an increase in the turbulent 
kinetic energy and that the lengthscale of the turbulent field is reduced upon passage 
of the shock. He also found that increasing the initial turbulent kinetic energy caused 
a straight shock wave to evolve into a distorted front. Lee, Lele & Moin (1991a) 
conducted direct numerical simulations of two-dimensional turbulence interacting with 
a shock wave and found that vorticity amplification compared well with the predictions 
of the linear analysis, but turbulent kinetic energy evolution behind the shock showed 
significant nonlinear effects. The energy spectrum was found to be enhanced more at 
large wavenumbers, leading to an overall lengthscale decrease. 

The primary objective of this work is to investigate the interaction of three- 
dimensional isotropic turbulence with shock waves using direct numerical simulations. 
Predictions of linear analysis are introduced where distinctions between linear and 
nonlinear interaction mechanisms are to be made. The numerical and analytical 
procedures employed in this work are briefly described in $2. In $3, we present the 
modification of turbulence statistics through the interaction with a shock wave. In $4, 
the modification of the shock wave structure through the interaction process is 
described. The summary of our findings is given in 55. 

2. Numerical simulation and linear theory 
2.1. Numerical simulation 

The time-dependent Navier-Stokes equations for a compressible fluid were solved 
directly. In the direct numerical simulation (DNS), all the relevant turbulence scales are 
resolved without a turbulence model, and the shock wave structure is resolved as a 
solution of the Navier-Stokes equations without introducing the techniques of shock 
fitting or shock capturing. The shock structure is adequately represented by the 
Navier-Stokes equations for Mach numbers less than 2.0 (Sherman 1955). (For 
polyatomic gases, however, the thickness of the shock wave obtained from a solution 
of the Navier-Stokes equations is thinner than that of the real shock wave because the 
rotational energy mode is not in equilibrium inside the shock wave (Lumpkin 1990).) 

The governing equations are the continuity equation, three momentum equations, 
and the energy equation. The corresponding dependent variables are density p, three 
components of momentum pi,  and the total energy ET per unit volume 
(ET = p(e+iui ut), where e is the internal energy), which are made dimensionless by po, 
p, c,, and p, cOp, respectively, where p, and c, are the density and the sound speed of a 
reference state. We assume the fluid to be a perfect gas with constant specific heats, and 
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FIGURE 1. Schematic diagram of the computational domain. 
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the ratio of specific heats, y = 1.40. The fluid is assumed to be Newtonian with zero 
bulk viscosity, and Fourier law is used for the heat flux. The Prandtl number, Pr, is 
assumed to be constant with a value of 0.75t, and the temperature-dependent viscosity 
is prescribed with the power law pip, = (TIT,)", where n = 0.76. 

An explicit time-advancement method is used. The variables (p,pur,  ET) are 
advanced using a three-step compact-storage third-order Runge-Kutta scheme (Wray 
1986). We used the sixth-order compact Pad6 schemes (Lele 1992~)  for the 
approximation of the spatial derivatives. Since the resolution requirements for a shock 
wave are far more restrictive than those for turbulence, a non-uniform grid is used in 
the streamwise direction to resolve the shock wave structure. 

The schematic diagram of the computational domain is shown in figure 1. The 
streamwise, or mean shock-normal, direction is chosen to be aligned with the x,-axis, 
and turbulence is assumed to be homogeneous in the transverse directions ( x p , x s ) ,  
where periodic boundary conditions are applied. The simulations are conducted in a 
reference frame fixed on the mean shock position so that long-time statistical averages 
of turbulence quantities can be obtained. In this frame of reference, the mean flow 
approaches the shock wave with a supersonic speed and leaves with a subsonic speed. 
Since the upstream flow is supersonic, we can specify all the flow variables at the inflow, 
while non-reflecting boundary conditions (Thompson 1987) are used at the subsonic 
outflow boundary. Mean values of velocity, pressure, and density are set to be uniform 
over the inflow plane. Turbulence generated at the inflow boundary is designed to be 
isotropic in velocity fluctuations and with no fluctuations in pressure and density. A 
detailed description and validation of the procedure to generate inflow ' turbulence' 
with a prescribed spectrum is given in Lee, Lele & Moin (19924. The inflow turbulence 
has the following three-dimensional energy spectrum function : 

E(k) = 1 6 ( a ) t ~ ( ~ ~ e x p [  - 2 ( t ) l ,  

where u, is the r.m.s. turbulence intensity and k,  is the most energetic wavenumber. 
Subscript zero denotes a reference state, taken as the inflow condition in the 
simulations. 

In a spatially evolving simulation, numerical waves are generated due to spurious 

t A laminar shock wave with Pr = 0.75 has a special property of constant total enthalpy inside the 
shock wave, and this Prandtl number is close enough to that of air at standard reference state. 
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interaction between the inflow and the outflow boundaries (Buell & Huerre 1988). 
These numerical waves have a wavelength of twice the grid size and propagate from the 
outflow toward the inflow boundary (Trefethen 1982; Vichnevetsky 1986). To remove 
these spurious waves, localized filtering near the inflow boundary is used (details may 
be found in Lee, Moin & Lele 1992b). 

For a direct numerical simulation of turbulence interacting with a shock wave, 
spatially evolving turbulence must be properly simulated, the shock wave needs to be 
well resolved, and the interaction of turbulence with a shock wave must be accurately 
predicted. A detailed validation of the computer code by separate computations of 
components of the shock-turbulence interaction problem is reported in Lee et al. 
(1992 b). 

Turbulent fluctuations are defined in terms of the deviation of flow variables from 
their Favre-averaged values. The following notation is used: fis an ensemble average 
of a flow variablef, andf’ is deviation fromfifis the mass-weighted average off, and 
f” is the fluctuation fromf(Favre 1965). That is, 

f’ = f-J: p= &i, f” = f - f  

In the results to follow, it is important to note that near the shock wave, some 
ensemble-averaged and mass-weighted turbulence statistics are ‘contaminated ’ by the 
unsteady motion of the shock wave. Thus, the large values of fluctuating quantities are, 
in most cases, due to oscillation of the shock (Lee et al. 1992b). 

2.2. Linear theory 
Some aspects of the interaction of turbulence with a shock wave are amenable to linear 
analysis. For the linear analysis to apply, the upstream Mach number variation must 
be a small perturbation to the mean upstream Mach number. Furthermore, the time 
required for turbulence to pass through the shock wave should be small compared to 
the turbulence timescale, pq2/e  (q2 = pu; u; /p  and c = T&u;/~x,) ,  where T ~ ,  is the 
viscous stress), so that there would be insufficient time for the redistribution of energy 
into different scales through nonlinear processes. 

In this work, we employed the linear interaction analysis (LIA) of Ribner (1953), 
where the main interest is the interaction of the upstream vorticity wave with a shock. 
In LIA, inviscid linear equations for the disturbances are solved downstream of the 
shock, and the boundary conditions at the downstream side of the shock front are 
expressed in terms of the upstream disturbances by the use of Rankine-Hugoniot 
relations. Through LIA, amplitudes, lengthscales, and orientations of downstream 
refracted or generated waves are represented in terms of those of an upstream vorticity 
wave. 

Since fluctuations in weak compressible turbulence can be regarded as a sum of 
vorticity, entropy, and acoustic waves, the modification of turbulence through the 
interaction can be predicted via LIA (Ribner 1954, 1969, 1987). In this work, the LIA 
procedure is revisited to predict modifications of turbulence and the shock wave. 
Modifications of some turbulence statistics previously reported by Ribner (1954, 1987) 
are reproduced in the present paper for completeness. 

3. Modification of turbulence 
The parameters of the simulations are the upstream mean Mach number M I ,  

fluctuation Mach number Mt = q/c, and turbulent Reynolds number Re,. Resolution 
of the shock wave structure limits the range of shock wave strengths; mean upstream 
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A B C D E F 

129 x 642 129 x 642 193 x 642 129 x 642 129 x 642 1 29 x 642 
1.20 1.20 1.20 1.20 1.10 1.05 
0.1 10 0.102 0.0953 0.0567 0.0762 0.100 

238 133 84.7 170 28 1 179 
19.9 14.9 11.9 16.8 21.6 17.3 
4 5 6 4 4 6 

Parameters for the simulations of shock-turbulence interaction. Re, = pu,,, AJj i ,  where 
A1 is defined in equation (2), and k, is defined in equation (1). 

Mach number in the range 1.05 < M ,  6 1.20 was used in the present work. Upstream 
of the shock wave turbulence is isotropic with Mt c 0.2, and compressibility effects are 
negligible (Lee, Lele & Moin 1991b). The range of M ,  studied in this work was 
0.057 < Mt < 0.1 10. The resolution requirement of turbulence lengthscales limits the 
range of Reynolds numbers. Here we define a turbulent Reynolds number, 

(pu; u;)’ 

P 
Re, = 

The Reynolds number range in the simulation was 80 < Re, 6 300. 
This paper is limited to the study of the interaction between weak shock waves and 

weakly compressible isotropic turbulence at low turbulent Reynolds numbers. Table 1 
lists the simulation parameters, where the values of M ,  and Re, are taken at  the 
location immediately upstream of the shock wave. 

3.1. Upstream turbulence 
Since the inflow ‘turbulence ’ is artificial, the flow takes some distance to evolve into 
a realistic turbulent flow. For all the cases listed in table 1, the computational box 
upstream of the shock was sufficiently long so that the turbulence interacting with the 
shock wave -- was a realistic field of isotropic turbulence with the velocity-derivative 
skewness, U’~,,/(U’~,~)~, ranging between -0.4 and - 0.5 (Tavoularis, Bennett 8c 
Corrsin 1978). The two-point correlations of fluctuations in velocities, density, and 
pressure are shown in figure 2(a) for case A. The longitudinal velocity correlation 
Q,,(r,) decays monotonically to zero as expected. The lateral velocity correlations, 
Q,,(r,) and Q3&-,), show approximate isotropy. The correlations of pressure and 
density fluctuations are found to be nearly identical. Figure 2(b)  shows the one- 
dimensional power spectra of velocity components and density upstream of the shock 
wave for case C (this case has the largest k,/k,, where k,! is the largest wavenumber 
represented in the simulation). The Kolmogorov wave number k, = (e/pv3); of this 
simulation was k, /k ,  = 4.63, or k,,/k, = 0.869 at  the inflow. The laminar shock wave 
thickness, 8: (the superscipt L denotes the laminar state), defined as 

is comparable to the Kolmogorov lengthscale, rK = l/k, (qK/8t = 0.96 in case C), and 
the Taylor microscale, A,, defined as 

A, = (Z)i/(<)i, (2) 
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FIGURE 2. (a) Two point correlations upstream of the shock wave (k, x1 = 9.07) for case A, where the 
mean shock position k,x ,  = 12.6; -, Qo8;  ---- 9 Q 11' -.- , QSS; ......, Q ; ---, Q p p .  (b) 
One-dimensional power spectra upstream of the shock wave for case C at k,xl = y5.8 (k,x', = 18.8): 
-, E3p; ---- 9 El i ;  -.- , Ea3; . . . . . -, Epp; x , Ell from E,, using the isotropy relation. 

is an order of magnitude larger than the shock wave thickness (h,/6,L = 8.9 in case C). 
The velocity spectra decay at least five orders of magnitude. Thus, in the worst scenario 
unresolved turbulence energy is estimated to be less than 0.01 YO of the resolved energy, 
which implies that the simulation represents all the important turbulence energetics. 
Despite a slight pile-up at high wavenumbers, the density spectrum decays at least three 
decades. The spectra of E,,(k,) and E,,(k,) are in good agreement, as expected for 
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FIGURE 3 (a-c). For caption see facing page. 
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FIGURE 3. Evolution of mean quantities across the shock wave for case A: (a) mass flux, (b)  total 
enthalpy, (c) streamwise velocity, ( d )  pressure, (e) temperature. Dashed lines in (c-e) denote the 
laminar downstream values. 

isotropic turbulence. The relation between the spectra E,,(k,) and E,,(k,) for isotropic 
turbulence, 

(Hinze 1975) is also satisfied. 

3.2. Mean flow variables 
Figure 3(u-e) shows the evolution of mean flow quantities across the shock wave for 
case A. Mass flux in a coordinate system fixed on the mean shock position is constant 
throughout the flow field. The average mass flux drops slightly (0.3 YO) across the shock 
wave, which causes a very slow drift of the mean shock position. This reflects the fact 
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FIGURE 4. (a) LIA predictions of velocity component amplifications in the near field and far field: 
-, u; (near); ----, u; and u; (near); -.-, u; (far); ....... u; and u; (far). (b) Decay of 
streamwise velocity fluctuation behind the shock wave: -, M, = 1.2; ----, M, = 1.5; -.-, 
M, = 2.0. 

that the mean turbulent shock propagation speed is different from the specified laminar 
shock propagation speed (Lele 1992b). In the case shown, the mean shock position 
drifts toward the inflow, and the drift speed is estimated to be about 0.7% of the 
average upstream flow speed. 

Total enthalpy, h, = c, T++, ui, is conserved across the shock wave and constant 
inside the shock wave for laminar flows with Pr = 0.75 in the coordinate system fixed 
on the shock wave. In the turbulent case, the mean total enthalpy increases slightly 
both upstream and downstream of the shock wave, and undergoes a rapid change 
inside the shock wave. The change inside the shock wave is less than 0.2% of the 
average total enthalpy. For turbulent flows in a shock-free region, the quantity, 

p(fil LT + cp  T"u'; + GI u; u';+ tu;G uE u';) + u; -rIL 
- - - -  
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is conserved rather than AT. The increase of A, in the shock-free regions is mainly 
balanced by the change of the streamwise velocity fluctuation, and hT + =stays 
fairly constant. 

The mean streamwise velocity, pressure and temperature undergo rapid jumps 
through the shock wave. The downstream pressure and temperature values are slightly 
higher than those for the corresponding laminar shock wave. The mean temperature 
rises slightly (by less than 0.4% of the mean temperature level) downstream of the 
shock wave. The temperature rise is caused, in part, by the irreversible energy transfer 
from turbulent kinetic energy to the internal energy by viscous dissipation. 
Downstream of the shock wave, work done by the mean pressure gradient is 
comparable to the viscous dissipation, and the combined effects are responsible for 
more than 98 YO of the temperature rise. Mean pressure and temperature undergo slight 
overshoots just behind the shock wave, followed by a relaxation due to non- 
equipartition of energy between fluctuations in compressible pressure and dilatational 
velocity through the shock wave (Coleman & Mansour 1991 ; Sarkar et al. 1991). Even 
though the magnitude of the overshoot is small compared to the jump across the shock 
wave, it contributes substantially to the level of the velocity fluctuation. 

3.3. Turbulent kinetic energy 
Interaction of vortical waves with a shock wave generates acoustic waves downstream 
of the shock, parts of which undergo rapid inviscid decay (for more details, see Ribner 
1953). Figure 4(a) shows the near-field and far-field velocity fluctuations for various 
shock strengths obtained using LIA. All components of the fluctuating velocities are 
amplified through the interaction. The decaying acoustic waves contribute significantly 
to the streamwise velocity fluctuations just behind the shock. The streamwise velocity 
fluctuations are larger than the transverse velocity fluctuations far away from the shock 
for M I  < 2.0, which includes the entire range of the present simulations. Figure 4(b)  
shows the decay of the streamwise velocity fluctuations for upstream turbulence with 
spectrum (1) predicted by the linear analysis. The fluctuations decay monotonically 
over short distances behind the shock wave (k ,  x, < 1 S). Transverse velocity 
fluctuations also undergo monotonic decays over about the same distances behind the 
shock. 

Figure 5 shows the evolution of the diagonal components of the Reynolds stress 
tensor R ,  in the numerical simulation for case C, where R ,  is defined by 

_ 5 _ -  

R, = U: U; = u;/ji. 

The off-diagonal components of R ,  stay close to zero over the entire flow field since 
turbulence is isotropic upstream and axisymmetric downstream of the shock. The 
streamwise component in the shock zone contains intermittency effects due to the 
oscillations of the shock (for more details of the intermittency effects, see Lee et al. 
1992b). The boundaries of the shock oscillations are defined as the locations where 
dzi,/dx, = 0; diiJdx, is negative only inside the shock wave and slightly positive 
elsewhere due to viscous heating. All the velocity fluctuations are enhanced during the 
interaction. The velocity fluctuations are axisymmetric behind the shock wave. Their 
return to isotropy is found to be negligible compared to the decay. The amplification 
in the transverse velocity fluctuation variance, which is defined as the ratio of the 
downstream maximum value to the upstream minimum value, lies between the near- 
field and far-field predictions of LIA. The streamwise component R,, undergoes a 
rapid increase behind the shock wave, while LIA predicts a monotonic decay for all the 
velocity fluctuations (figure 4b) .  
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shaded region is where turbulence statistics are affected by the shock intermittency. 

In order to identify the mechanisms of amplification and rapid evolution o 
turbulent kinetic energy (TKE), the terms in the transport equation of TKE (Favrc 
et a/. 1976) were computed. Only the TKE budget is discussed in detail here. Details o 
the R,, budget may be found in Lee et al. (1992b). The TKE transport equation is 
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FIGURE 7. (a) Unscaled and (b)  scaled pressure-velocity correlations (x ,  is the position for the peak 
negative correlation): -, case A; ----, case B; -.-, case C; . . . . . . , case D; ---, case E. 

The convection of TKE (I) is equal to the sum of production by the mean strain field 
(11) and that by the mass fluctuation (III), the pressure work (IV), the turbulent 
transport (V), and the viscous dissipation and transport (VI). 

Figure 6 shows the budget. The statistics of the flow variables inside the shock wave 
are contaminated by the intermittency effect caused by the unsteady distortion of the 
shock wave (Lee er al. 1992b). Mechanisms of velocity fluctuation amplification in 
shock-turbulence interaction cannot, therefore, be unambiguously identified by 
investigating turbulence statistics inside the shock zone. Outside the shock wave, the 
viscous dissipation is the dominant term and the pressure work is the only other term 
that has a comparable magnitude. The rapid evolution of TKE just downstream of the 
shock wave (figure 5 )  is caused by this pressure work. The pressure work - term can be 
decomposed into two physically distinct terms : the pressure-dilatation p'u;,, and the 
pressure transport term (~'u;),, 

- - -  
- p f  U'' = p'u?. - (p'u") 

,t 1 2 . 1  1 ,1. 
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FIGURE 8. LIA prediction of transverse vorticity amplification. The superscripts U and D denote 
the upstream and downstream states respectively. 

M ,  

A positive pressure-dilatation leads to a reversible energy transfer from the mean 
internal energy to the TKE, while pressure transport contributes to a redistribution of 
TKE in the inhomogeneous direction. The decomposition downstream of the shock 
wave shows that the pressure transport is the main contributor to the pressure work 
term, thus the rapid evolution of TKE is caused by the pressure transport term, and 
pressure-dilatation acts mainly to convert the mean internal energy into turbulent 
kinetic energy, leading to the relaxation from the mean temperature overshoot 
downstream of the shock wave (figure 3e).  

To gain insight into the physics of the pressure transport downstream of the shock, 
several different scalings of p'u; were examined. The best scaling for collapsing the p'u; 
evolution of cases A-E is based on the assumption that the correlation between the 
pressure and velocity fluctuations is mainly from the acoustic waves. The correlation 
and the streamwise distance are scaled as 

respectively, where A is a Taylor microscale. The unscaled and scaled results are shown 
in figures 7(a) and 7(b), respectively. The scatter in the unscaled case is as much as a 
factor of five, which is reduced to less than 30% in the scaled case. This suggests that 
the rapid evolution of TKE may be caused by the propagation of acoustic waves 
generated during the interaction. 

Use of a non-reflecting boundary condition (Thompson 1987) at the outflow 
generated the anomalous behaviour near the outflow boundaries seen in figures 6,7(a)  
and 7(b). This is due to an incomplete suppression of the acoustic wave reflection. To 
check that this anomalous behaviour does not contaminate the overall evolution of the 
flow downstream of the shock wave, the more refined boundary condition of Giles 
(1990) was implemented in the code. These numerical experiments verified that the 
undesirable behaviour was indeed confined to only a small region near the outflow 
boundary and the statistics over the rest of the domain remain unaltered (for more 
details, see Lee et al. 1992b). 
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FIGURE 9. Evolution of components of vorticity for (a) case A (Re,= 240) and (b) case C 
(Re, = 84.8): -, wl; ---- , w z ;  -*-  , wg. Symbols in (a) are from the simulation with 97 x 48 x 48 
grid points: +, wl; x , w e ;  0, w3. 

3.4. Vorticity 
Variance of vorticity fluctuation is a main contributor to the TKE dissipation rate. 
Figure 8 shows the prediction of LIA for the amplification of transverse vorticity 
components across the shock wave. LIA predicts that the streamwise component 
remains unchanged. As the strength of the shock wave increases (higher mean Mach 
number), the ratio of the downstream to upstream vorticity also increases. The 
asymptotic value of the amplification factor for the mean-square transverse vorticity 
components is about 20 for a shock wave with very large Mach number. 

Figures 9 ( a )  and 9(b)  show the evolution of vorticity components in numerical 
simulations for cases A and C, respectively. As expected the transverse components are 
amplified across the shock, while the streamwise component is hardly affected : 
turbulence behind the shock wave becomes axisymmetric in vorticity fluctuations as 
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well as in velocity fluctuations. Vorticity amplification is consistent with the 
experimental observation by Jacquin et al. (1991) of an increased TKE dissipation rate 
behind the shock wave. The amplification ratios of the transverse vorticity across the 
shock wave computed from the simulations compare favourably with the LIA 
predictions: the maximum difference is about 5 % for case F with M ,  = 1.05 and 
M ,  = 0.10, where the local shock wave structure is significantly modified (see figure 14). 
Even though amplifications of transverse components of vorticity are very close to the 
LIA predictions, they are systematically lower. Moveover, the difference becomes 
larger for higher upstream turbulence levels, or for the larger values of the ratio 

Although computations show that there is no signifiant effect of Reynolds number 
on the amplification of vorticity, there does exist a significant Reynolds-number 
dependence on the free evolution of vorticity downstream of the shock. For the flow 
with the higher Reynolds number (figure 9a), transverse components decay rather 
slowly with a slight increase in the streamwise component near the shock wave after the 
interaction. For the flow with the lower Reynolds number (figure 9b), vorticity decays 
monotonically both upstream and downstream of the shock wave. In order to check 
if the increase of the streamwise vorticity component behind the shock (figure 9a) is 
caused by poor resolution of the simulation, a coarse grid simulation with 97 x 48 x 48 
points was performed. As shown in figure 9(a), streamwise vorticity fluctuation 
predicted by the fine-grid simulation is slightly larger than that of the coarse 
simulation, which confirms that the increase of the streamwise vorticity component is 
not a numerical artifact. 

In order to identify the dominant mechanisms for the vorticity amplification and 
clarify the Reynolds-number effect on vorticity evolution, we examined the budget of 
the transport equation of the vorticity variances q, 

M,2/(M; - 1) .  

ao'2 - ~- 

axj 

(1) (11) (111) (IV) (V) (VI) (VII) (VIII) 

a a = 2 ( b i 0 ; f z j  + 2w:w; S : ~ - 2 w f ~ ~ ~ - ~ + 2 € , j , w ~ p , j p , k / p " ( ( w ' ~  u;),k + Q z 9  

-+ --= -- --+ - - .-4 
(4) 

where the repeated Greek indices are not summed. Here, sij = f(u,,, + uj,J is a strain 
rate tensor and Qz is the viscous dissipation and transport, given by 

The term (I) on the left-hand side of (4) represents the advection by the mean flow. The 
first and second terms (11,111) on the right-hand side represent vortex stretching by the 
mean and turbulent strain fields, respectively. The next two terms (IV, V) represent 
vorticity+ompression products. (VI) is the production by the baroclinic torque, (VII) 
the transport by the turbulent velocity field, and the last term (VIII) is the viscous 
dissipation and transport. 

The balance of the terms in (4) is investigated for the transverse vorticity z. Inside 
the shock wave, the vorticity-compression (IV + V) is the leading term for vorticity 
amplification. The viscous term (VIII) balances with the vortex stretching (I1 + 111) 
beyond the shocked region. Baroclinic torque (VI) is less than 1 YO of the leading terms 
throughout the domain for all the simulations we performed, including case F where 
the shock wave is strongly distorted. The effect of turbulent transport (VII) is also 
found to be negligible. The vorticity-mean compression (IV) is much larger than the 
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other terms inside the shock. The dominance of the vorticity-mean compression 
explains the good comparison of the simulation results with the LIA predictions. 

is investigated for case 
A and case C. Inside the shock wave, effects of vortex stretching (II+III) and 
vorticity<ompression (IV+ V) tend to cancel, resulting in no appreciable change in the 
streamwise vorticity. As shown in figures 9(a) and 9(b), there is a significant difference 
in the evolution of the streamwise vorticity for flows with different Reynolds numbers. 
Outside the interaction zone, the dominating terms in (4) are the viscous term (VIII) 
and the vortex stretching (I1 + 111) - mainly by the turbulent strain field. Through the 
interaction, turbulent vortex stretching is sufficiently amplified to overtake the viscous 
dissipation behind the shock wave for the higher Reynolds number flow, resulting in 
the increase in the streamwise vorticity component behind the shock wave (figure 9a). 
Intensification of the turbulent stretching mechanism for the lower Reynolds number 
flow is not sufficiently pronounced to overcome the viscous dissipation. This trend can 
be regarded as the Reynolds-number dependence of low Reynolds number turbulence 
which is undergoing relaxation from a strained state. 

3.5. Turbulence lengthscale 
Experimental studies (Debieve & Lacharme 1986; Keller & Merzkirch 1990; Honkan 
& Andreopoulos 1992) have reported that large-scale turbulent motions are enhanced 
more than small-scale motions as turbulence passes through a shock wave, leading to 
the overall increase of turbulence lengthscales, especially of Taylor microscales. In 
order to check whether turbulence lengthscales do indeed increase, we investigated the 
amplification of the one-dimensional velocity spectra, E,,(w) and Ell(kJ, through the 
linear analysis. In the following, we consider only the contribution of the vorticity 
waves to the upstream and downstream velocity fluctuations, since the contribution of 
the acoustic waves is negligible after a short distance behind the shock (figure 4). 
Predictions of LIA on the amplification of the spectra depend on the shape of the 
spectrum,t and the von Karmdn spectrum 

The balance of terms in (4) for the streamwise vorticity 

is chosen for the analysis presented here. The amplification ratios for the one- 
dimensional frequency spectrum and wavenumber spectrum for different shock 
strengths are shown in figures 10(a) and lO(b), respectively. The frequency spectrum 
amplification depends on the choice of the reference frame, but the wavenumber 
spectrum amplification is independent of the choice. (Figure 10 corresponds to the 
frame of reference fixed on the mean shock position.) The spectrum amplification ratio 
is larger for a low-frequency wave, which is consistent with the results of Ribner (1987). 
Some researchers have interpreted this fact as evidence of turbulence lengthscale 
increase through the interaction, but this conclusion is incorrect as a change in 
frequency spectra reflects a change in timescale, not in lengthscale. Higher amplification 
at the small-frequency part of the spectrum implies that the turbulence timescale 
increases through the interaction. By considering the mean flow deceleration through 
the shock and applying Taylor’s hypothesis, the frequency spectrum amplification 
(figure 10a) can be converted into wavenumber spectrum amplification, figure 10(b) 
(for details, see Lee et al. 1992b). The wavenumber spectrum is amplified more at large 
wavenumbers. A correct interpretation of LIA provides enhanced small scales and for 

t Even though the spectrum amplification depends on the spectrum shape, the Taylor microscale 
ratio across the shock wave is independent of the spectrum shape for isotropic turbulence. 
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large M ,  a suppression of the spectrum at small wavenumbers. Larger amplification at 
large wavenumbers is more pronounced for stronger shock waves. It is, therefore, 
erroneous to infer an increase in turbulence lengthscale in shock turbulence interaction 
by appealing to Ribner's analysis (akin to figure 10a) as in Keller & Merzkirch (1990). 
Investigation of the spectrum amplification leads to the conclusion that the turbulence 
timescale increases through the interaction, while the turbulence lengthscale decreases. 

The experimental results by Debieve & Lacharme (1986) are consistent with the 
present predictions. However, they compared the upstream frequency spectrum to that 
on the shock and concluded an increase in the lengthscale. The spectrum on the shock 
is contaminated by the intermittency effect due to the unsteady shock front distortion. 
The characteristic lengthscale of the distortion scales with the upstream turbulence 
lengthscale (see 44 for details) to yield apparent amplification of the spectrum on the 
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FIGURE 12. (a) Evolution of Taylor microscales for case C:  -, A , ;  ---- ' A 2 '  . -.-, A,. Vertical 
lines denote the boundaries of shock intermittency. (b)  Comparison of Taylor microscale change 
across the shock wave with LIA prediction: -, LIA, symbols from DNA; A, case A; + , B;  x , 
C; 0, D; V, E. The superscripts U and D denote the upstream and downstream states, respectively. 

shock at energetic (or large) scales. This enhancement does not necessarily imply the 
amplification of the turbulent motion of that scale. The upstream wavenumber 
spectrum should be compared with the downstream wavenumber spectrum. Proper 
comparison of wavenumber spectra shows more amplification at small scales than at 
large scales, leading to an overall scale decrease. 

Figures 1 1 (a) and 1 1  (b) show the evolution of the one-dimensional power spectra of 
ui(Ezz(k2)) and density (Epp(kz)), respectively. Across the shock wave, enhancement of 
the spectrum in figure ll(a) can be noticed with more amplification at large 
wavenumbers. As the flow evolves further downstream of the shock, the spectrum 
drops over the entire range of wavenumbers. More amplification at large wavenumbers 
across the shock wave leads to a decrease of the turbulence lengthscales, especially the 
Taylor microscale. This is shown in figure 12(a). Density fluctuations are amplified 
across the shock wave due to the amplification and generation of acoustic waves 
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through the interaction. There is no appreciable wavenumber dependence in the 
amplification of the power spectrum of density fluctuations. 

The evolution of the longitudinal Taylor microscales A& is plotted in figure 12(a). 
Noticeable reductions of all the microscales are found across the shock wave. The 
evaluation of the streamwise microscale A, inside the shock wave is significantly 
contaminated due to the shock front intermittency. Since it is difficult to identify a 
‘downstream value’ of A, due to its rapid evolution behind the shock, figure 12(b) 
compares Taylor microscale reductions only in a transverse direction with LIA 
predictions. Except for cases with strong upstream turbulence intensity, the simulation 
results compare favourably with the LIA predictions. As the upstream turbulence 
intensity increases, the lengthscales decrease more for the same M, (compare cases A, 
B, C and D). In conclusion, direct numerical simulation confirms that turbulence 
lengthscales do decrease through the shock-turbulence interaction. 

3.6. Thermodynamic properties 
Thermodynamic properties are held uniform in space and constant in time at the inflow 
boundary, and fluctuations in thermodynamic variables develop as the flow evolves 
downstream. In figure 13 (a), we present the evolution of r.m.s. pressure, density, and 
temperature fluctuations (p,,,, prms, and T,,,) throughout the field. As the flow passes 
through the shock wave, all the fluctuations are amplified, followed by a rapid decay. 
A polytropic exponent n(xJ relating the pressure and density fluctuations may be 
defined as 

which is equal to y (1.40 here) for isentropic fluctuations. The polytropic exponents 
deduced from the simulations stay close to the isentropic value throughout the domain 
for all the simulations, varying between 1.35 and 1.40. The joint probability density 
function (JPDF) of pressure and density was computed to investigate if the isentropic 
relation is also satisfied for instantaneous states. Figure 13(b) shows the JPDF of the 
instantaneous pressure versus instantaneous density scaled with their local mean 
values, p(x,)  and p(x,). Clearly the isentropic relations are satisfied between the 
instantaneous states, even inside the shock wave. 

By use of the Gibbs’ equation and the equation of state of an ideal gas, the pressure 
fluctuation can be represented in terms of the fluctuations in density and entropy as 

where s is the entropy. When temperature (or entropy) inhomogeneity in the flow is not 
significant, or 

the above relation reduces to the isentropic relation, p’ = Pp’. This inequality can be 
translated into the following form (Thompson 1971, p. 144): 

The contribution of the right-hand side of (6)  to the dilatation was found to be less than 
5 %  in the present simulations, which verifies the fact that the relations between 
thermodynamic property fluctuations are nearly isentropic. 

19 F L M  251 
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This may be contrasted to the case where an appreciable mean temperature gradient 
exists in the flow and the pressure fluctuation is negligible; the expression ( 5 )  with the 
assumption of negligible stagnation temperature variation leads to the ' strong 
Reynolds analogy ' (Morkovin 1962 ; Bradshaw 1977) 

Note that the correlation coefficient between p' and T" is - 1 in the strong Reynolds 
analogy, while it is + 1 for isentropic fluctuations. Thus, the widely used Morkovin's 



Isotropic turbulence interacting with a weak shock wave 555 

hypothesis which is suitable for compressible turbulent boundary layers is not valid in 
the present shock/turbulence interaction. Morkovin’s hypothesis requires that the 
density fluctuations be primarily associated with entropy fluctuations. Whereas this 
condition is presumably met in shear flows, it is not met in the present flow. A similar 
situation is also encountered in compressible homogeneous turbulence (Blaisdell, 
Mansour & Reynolds 1990). 

In order to identify the mechanisms of amplification and decay of the density 
fluctuation variance p”, the terms in the transport equation for the density fluctuation 
variance (Taulbee & Van Osdol 1991) were computed: 

-+ ----- 
(1) (11) (111) (IV) (V) (VI) 

The convection (I) is balanced by the production due to mean compression (11) and the 
mean density gradient (111), densitydilatation correlations (IV + V), and turbulent 
transport (VI). The balance of the terms in (7) is investigated for the density fluctuation 
variance, 7. Across the shock wave, density fluctuation is enhanced mainly by the 
production due to the mean compression (11) and the mean density gradient (111). 
Behind the shock wave, however, the evolution of is dominated by the turbulent 
densitydilatation correlation (IV). In summary, density fluctuations are amplified 
across the shock wave mainly through the mean flow compression, whereas their 
evolution behind the shock wave is dominated mostly by nonlinear mechanisms. 

4. Modification of an instantaneous shock wave 
As a shock wave propagates in a turbulent medium, the instantaneous structure of 

the shock wave is modified. Variations in shock wave strength and shock front 
distortion due to turbulence are discussed in this section. 

The turbulent upstream condition causes the shock wave structure to be non- 
uniform in the (x,, x,)-plane and the shock front to be distorted. Instantaneous density 
fields at a typical (x,,x,)-plane from cases D and F are shown in figures 14(a) and 
14(b): figure 14(a) is for weak upstream turbulence (M, = 1.20, Mt = 0.057) and figure 
14(6) is for a relatively intense turbulence (M, = 1.05, Mt = 0.10). The overlaid 
contour lines near the centre of the figures are isocompression (constant value of ui,J 
lines. Figure 14(a) shows a clear shock front across which the increase in density 
occurs, while for the more intense upstream turbulence (figure 14b) the shape of the 
shock front is more distorted. The variation in the transverse directions of the peak 
compression inside the shock wave, or the shock strength variation, becomes stronger 
for the more intense upstream turbulence. The variation in the visual thickness of the 
shock wave is also larger for the stronger upstream turbulence. Low-density regions are 
often found behind the mean shock position for flows with Mf > a(Mf - 1) (a x 0.1). 

Figures 15(a) and 15(b) show the profiles of dilatation along different mean flow 
streamlines from an instantaneous snapshot of the flow for cases D and F, respectively. 
The strength of the shock wave (or the peak compression in the shock) varies widely 
from one streamline to another. Strong compression tends to occur in regions where 
the shock wave is pushed downstream, and weak compression tends to occur in regions 
where the shock wave is pulled upstream. For the case of intense upstream turbulence 
(case F), the structure of the shock wave is significantly modified: multiple peaks in 

10-7 
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(a) 

FIGURE 14. Instantaneous density field in a typical (x,,x,)-plane for (a )  case D and (b) case F. A 
region of higher density is denoted by a darker shading. The grey level varies from 0.95 to 1.45 with 
an increment of 0.05 in case D, and from 0.96 to 1.1 5 with an increment of 0.01 in case F. The overlaid 
thick lines near the centres of the figures are isocompression lines. 
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FIGURE 15. Profiles of instantaneous dilatation along the mean streamlines for (a) case D and (6) case 
F. 8, is the peak compressive strain rate in the laminar shock wave at the same upstream Mach 
number. 

compression along streamlines are noticeable. Each compression peak has a strength 
comparable to the mean shock wave. Sometimes, a shock wave is replaced by a series 
of compression waves. 

The peak compression t3min(~1, x3, t )  inside the shock wave along the mean 
streamline may be used as a measure of the shock wave strength. The peak value is 
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FIGURE 16. Comparison of scaled r.m.s. shock front inclination angles, u: = u2(ziJur,,,JU, with LIA 
predictions: -, LIA; symbols from DNS: A, case A; +, B; x ,  C; 0, D; V, E. 

taken along the x,-direction for each x, and x3. The average peak compression is found 
to be weaker than the peak compression OL of the laminar shock wave by about 10%. 
The peak compression varies widely across the transverse plane, which is reflected in 
the large value of the ratio of the r.m.s. and the mean values of the peak compression, 

The probability density function (PDF) of the peak compression inside the shock 
wave shows that the probability of large compression zones is higher than the Gaussian 
distribution by several orders of magnitude. This trend is more significant for the 
stronger upstream turbulence, which is confirmed by the skewness (S) and flatness (F) 
values of the PDF, S = -0.81, F = 4.03 for case C and S = - 1.46, F = 6.49 for case 
F, respectively. 

The statistics of shock front distortion from the simulations are compared with those 
from the linear analysis. The definition of the shock wave front in the simulated field, 
however, is not trivial, because in the numerical simulations the shock wave spans over 
several grid points, 8i/(AxJrnin = 2 - 3. The pressure half-rise point was chosen to be 
the shock front position, E(x,, x3, t); that is, 

( ~ r n i n ) r r n s / K J  = 0.42. 

where p L  denotes the pressure in the laminar shock wave with the same M, and the 
superscripts U and D denote the upstream and downstream states, respectively. This 
designator is very well-defined and remains relatively noise-free for the cases with weak 
upstream turbulence. In order to check the sensitivity of the shock front statistics to the 
special choice of the designator, statistics of the shock wave distortion based on the 
pressure half-rise point were compared with those based on the density half-rise point. 
The differences were always less than 1 'YO of the predicted r.m.s. values. Figure 16 
shows the scaled r.m.s. shock front inclination angle in the x,-direction, (T, = afJax,. 
LIA predicts the r.m.s. shock front inclination angle to be independent of the upstream 
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energy spectrum shape, and that the inclination angle is proportional to the upstream 
turbulence intensity. The statistics from the simulation are in fair agreement with the 
LIA predictions. As the fluctuation Mach number of the simulation increases, the 
simulation results deviate further from the linear prediction. 

LIA predicts that the spanwise wavelength of the shock front movement is the same 
as that of the upstream turbulence and that fluctuating shock front speed scales 
with the upstream turbulence velocity (for more details, see Lee et al. 1992b). 

5. Summary and discussion 
The interaction of isotropic turbulence with a shock wave has been investigated by 

means of direct numerical simulations. The results have been compared with the 
predictions of the linear theory. 

The simulations show that the diagonal components of the Reynolds stress tensor, 
R ,  are enhanced across the shock wave. The amplification is larger for stronger shock 
waves within the range of Mach numbers in the simulation, 1.05 < M ,  < 1.20. The 
simulations show a rapid increase followed by a decrease of R, ,  downstream of the 
shock wave. Linear analysis, on the other hand, predicts that R, ,  monotonically decays 
from its post-shock value to the far-field value. The budget of the TKE transport 
equation revealed that rapid evolution of TKE is caused mainly by the redistribution 
of TKE (through the pressure-transport term) in the streamwise direction as the 
turbulence relaxes from the compression. 

The simulations show that transverse vorticity components are amplified and that 
the streamwise component is not influenced by the interaction. The amplification is 
larger for stronger shock waves. The amplification of transverse vorticity components 
predicted by the simulations is in excellent agreement with those of the linear analysis 
for M,2 < a(M:  - 1) with a z 0.1. Examination of the budget of revealed that the 
vorticity-mean compression w'x !jj is the main contributor to the transverse vorticity 
amplification during the interaction. 

The energy spectrum is amplified more at large wavenumbers, leading to the 
decrease of turbulence lengthscales through the interaction. This is consistent with the 
prediction of the linear theory: amplification is larger for large wavenumbers in the 
wavenumber spectrum, while it may be larger for small frequencies in the frequency 
spectrum. 

Thermodynamic property fluctuations are amplified significantly across the shock 
wave. The relations between scaled r.m.s. property fluctuations are very close to 
isentropic, at least for turbulence passing through a weak shock wave with M ,  < 1.20. 
Isentropic relations are satisfied even between the instantaneous fluctuations 
throughout the flow field including the shock wave. 

Owing to the non-uniformity of the upstream turbulence, the shock wave has a time- 
dependent distorted front and a non-uniform thickness in the transverse directions. 
For the simulations with Mf < a(M:- l), shock waves have well-defined fronts with 
a single compression peak along each mean streamline. Shock front distortions are 
found to be proportional to the upstream turbulence intensities. For a simulation with 
Mf > a(M; - l), shock waves no longer have well-defined fronts in the transverse 
directions. Low-density regions are often found behind the mean shock position, and 
shock wave thickness varies quite widely in transverse directions. Along the streamwise 
direction, multiple compression peaks are found inside the shock wave. 

Direct numerical simulations reported in this paper were limited to interactions of 
weak shock waves with turbulence at low Reynolds numbers due to resolution 
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requirements of shock waves and turbulence (for details, see Lee et al. 19926). For a 
strong shock wave, it is impractical to resolve a shock structure not only because the 
required cost of resolving the shock wave is prohibitive, but also because the 
Navier-Stokes equations are not valid inside a shock wave for M ,  > 2.0. Therefore, 
numerical simulation of a strong shock wave interacting with turbulence requires a 
method of treating the shock wave as a discontinuity without loss of numerical 
accuracy elsewhere. Various methods including shock capturing, shock fitting and 
filtering schemes are under consideration. The methods of treating the shock wave can 
be validated by comparing the results with those from DNS where the shock wave is 
directly resolved. 

Direct numerical simulation is impractical for calculations involving high Reynolds 
number turbulence and strong shock waves. For such cases one must resort to the 
large-eddy simulation technique where the large-scale motions are resolved and the 
effects of the unresolved turbulence on the large-scale field are parametrized by 
subgrid-scale models. 

Interaction of isotropic turbulence with a shock wave is only an element of the 
complex interaction between a shock and a turbulent boundary layer. To fully 
understand the mechanisms of the interaction, further research is required to 
investigate the effects of wall presence and mean shear. 

The authors would like to acknowledge the financial support from the Air Force 
Office of Scientific Research under Grant No. 88-NA-322 with Dr Leonidas Sake11 as 
the technical monitor. The use of the computer facilities of NAS and NASA-Ames 
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